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A B S T R A C T

Reliable monitoring of wildlife populations represents a non-negligible cost, and in a limited-resource world,
resources allocated to monitoring are not devoted to actions to solve identified problems.

I explore resource efficient survey designs based on a negative binomial distribution including variable survey
intervals for marine turtles using track counts as an index of female activity. In the modified procedure, all new
tracks between two monitoring patrols are recorded. These data are analyzed by statistical models that take
advantage of the statistical properties of the sum of counts.

The outputs of models with different lagged monitoring dates (3–10 days) are compared with the outputs of
daily surveys using extrapolations from high and low density populations. Results show that the quality of the
estimates is similar when total time series analysis is compared with situations in which only a fourth, a seventh,
or a tenth of monitoring daily during the season are used.

This solution permits the reallocation of funds from monitoring to other conservation activities. Furthermore,
the efficient sampling design and the statistical methods allow getting similar information with less effort.

1. Introduction

Ecological monitoring is a standardized approach to address the
growing number of conservation problems around the world. Count
data for wildlife populations are used in conservation research to ensure
that the population stays within sustainable limits, to guarantee its
survival, or to test whether populations of pest species remain below
critical levels known to threaten other populations (Williams et al.,
2002). Well planned data collection for long-term monitoring of wild-
life populations should be conducted consistently enough to be com-
parable between years and across populations and precisely enough to
detect changes in a population with sufficient confidence and power
(Gerrodette, 1987; Hayes and Steidl, 1997; Sims et al., 2008). When
different survey methods or efforts are used, modeling techniques may
assist to standardize data (Elphick, 2008).

The choices of sampling design are subject to several constraints,
some specific to the species or study site (Kéry et al., 2007) and others
specific to the human and financial resources available for monitoring.
Several monitoring strategies apply for the context of marine turtles at
nesting sites (SWOT Scientific Advisory Board, 2011). Researchers
quantify the number of clutches laid by a population as an index of

population size (Gerrodette and Taylor, 1999). It is relatively easy to
identify a sea turtle track, because females nest on open sandy tropical
and subtropical beaches, and leave wide deep tracks that persists on the
beach (Schroeder and Murphy, 1999). Modeling the seasonal nesting
phenology of marine turtles offers a way to estimate global nest or
annual track counts without being present daily (SWOT Scientific
Advisory Board, 2011). Several methods have been proposed that
model the nesting season of marine turtles. Most papers have discussed
the equations that define the quasi-Gaussian shape of a nesting season
(Bellini et al., 2013; Girondot, 2010; Girondot et al., 2006; Gratiot
et al., 2006; Whiting et al., 2014). A final conclusion is that many so-
lutions are similar (Whiting et al., 2014). Challenges in counting sea
turtle clutches are that nesting seasons usually span several months,
turtles can lay their eggs on remote beaches that are difficult or ex-
pensive to access and total number of clutches on some beaches can be
very low.

When total nest number during the season is low, all these methods
require intensive fieldwork to capture enough of the few nesting events
that occurred. For example, of the 113 time series available for the
hawksbill turtles nesting in Guadeloupe archipelago only 67 could be
used to fit a model to the nesting season (Delcroix et al., 2013). For the
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remaining 46 time series no clutches were observed during the mon-
itored nights. This does not mean that hawksbill turtles do not nest on
these beaches but that there was no monitoring for at least one night on
which one hawksbill turtle laid a clutch of eggs. For example, on Bois
Jolan beach on Sainte Anne no clutches were recorded in 2008 on the
12 monitored nights although a track of a turtle who laid a clutch on a
previous night was recorded on 9 July. The power to detect a trend of
specified magnitude with a given level of significance is negatively
related to variability and positively related to sample effort (Carlson
and Schmiegelow, 2002). While increasing the sampling effort increases
the power to detect a trend, excessive sampling wastes limited mon-
itoring resources (Bernstein and Zalinski, 1983). In a world with limited
resources to allocate towards conservation, every that time resources
(human or financial) are allocated to one action, they become un-
available for other actions (Klein et al., 2016). Thus, monitoring must
be able to identify, and often respond to, trends with a high degree of
certainty, but ideally use as few resources as possible.

We therefore propose and evaluate a strategy to monitor and ana-
lyze marine turtle track counts for a nesting season covered by fewer
than daily monitoring patrols as is usually done. We start from the
observation that marine turtle tracks persist several days. We apply a
statistical model describing these data and explore alternatives of
3–10 days time lags as alternatives to daily monitoring. The models are
applied to datasets of low and high level of nesting on beach to evaluate
different observed situations.

2. Materials and methods

2.1. Statistical distribution of daily nest numbers

The literature describes several statistical distributions to model the
daily nesting activity in a typical sea turtle season:

• implicit homoskedastic Gaussian (Gratiot et al., 2006; Whiting et al.,
2013; Whiting et al., 2014)

• explicit heteroskedastic Gaussian (Girondot et al., 2006);

• Poissonian (Bellini et al., 2013; Godgenger et al., 2009);

• Negative binomial (Delcroix et al., 2013; Girondot, 2010; Girondot
and Rizzo, 2015)

The assumption that a Gaussian probability distribution underlies
the observed data is problematic for several reasons described in
Godgenger et al. (2009). Firstly, the Gaussian distribution represents
probabilities associated with a continuous variable that can theoreti-
cally take on any possible value within a plausible range, including
fractional values if the observational method has the necessary preci-
sion. Nest numbers are discrete counts sub-sampled and can only be
represented by non-negative integers. Such data are also characterized
by low mean values and high variances. Because of its symmetry and its
domain of validity from −infinity to +infinity, the normal probability
distribution can imply a substantial probability of observing a negative
number of nests. Therefore, we will focus on comparison of Poissonian
and negative binomial distributions.

2.2. Poissonian and negative binomial distribution

The Negative Binomial (NB) distribution can be used to describe the
distribution of the number of successes or failures. Suppose that there is
a sequence of independent Bernoulli trials, with each trial having two
potential outcomes called “success” and “failure.” In each trial, the
probability of success and failure is p and (1 – p), respectively. This
sequence is observed until a predefined number r of failures has oc-
curred. The random variable of observed successes, X, has a NB dis-
tribution as follows:

∼X NB r p( ; )
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The notation in R language is dnbinom(x, size = r, prob = p,
log = FALSE) (R Core Team, 2017).

In ecology, an alternative parametrization of NB distribution is often
used to describe the distribution of an organism using the mean number
of individuals m and an aggregation parameter k (Taylor et al., 1979).
The random variable of observed individuals, X, will have the following
NB distribution:
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The notation in R language is dnbinom(x, size = 1/k, mu = m,
log = FALSE) (R Core Team, 2017).

The variance of the NB distribution is (m+m2/k), and hence de-
creasing values of k correspond to increasing levels of dispersion
(Lloyd-Smith, 2007). The Poisson distribution is obtained as k→ ∞, and
the logarithmic series distribution is obtained as k → 0 (Anscombe,
1950; Bliss and Fisher, 1953). When k = 1, the NB distribution is re-
duced to the geometric distribution. Ecological statistical literature uses
both the quantity k and α = 1/k (confusingly, the term “dispersion
parameter” can refer to either k or α; other terms for k include “shape
parameter” and “clustering coefficient”).

The properties of the sum of NB random variables have a special
interest when the series of events are aggregated into one value. When
counts are available for several consecutive days, the distribution of this
sum is no longer a NB distribution (Furman, 2007). The Lyapunov
central limit theorem states that the arithmetic mean of a sufficiently
large number of iterates of independent random variables, not ne-
cessarily identically distributed, will be approximately normally dis-
tributed, regardless of the underlying distribution (Billingsley, 1995;
Rice, 2007). However, tracks on sand can often be visible only for
2–10 days depending on local conditions, therefore the central limit
theorem cannot be applied safely with so few days. An exact distribu-
tion of the sum of NB random variables must therefore be established.

Let ∼X NB r p( ; )i i , then a classical result is ∑ ∑∼X NB r p( ; )i i
(Johnson et al., 1992). This result holds only for p being constant. When
NB parametrization is ∼X NB m k( ; )i i , k being a constant, the model can
be written as ∼ = = +X NB r k p k k m( ; /( ))i i i . In this case, p is not
constant and the previous result does not hold. The density probability
of the sum of NB random variables must be estimated.

Table 1
Model selection based on time series with a total of (A) 35 or (B) 2762 nests. A parameter
is set to 0 when it is not indicated on a set of parameters. ΔAIC is the difference between
each model and the selected one. The Akaike weight for the selected model is in bold.

A: 35 nests AIC ΔAIC Akaike weight

Max MinB MinE LengthB Peak LengthE Flat 145.23 8.00 0.01
Max MinB MinE LengthB Peak LengthE 143.19 5.96 0.03
Max Min LengthB Peak LengthE 141.33 4.10 0.07
Max MinB MinE Length Peak Flat 143.27 6.04 0.02
Max Min Length Peak Flat 143.27 6.04 0.02
Max LengthB Peak LengthE 139.15 1.92 0.22
Max Length Peak 137.22 0.00 0.59

B: 2762 nests AIC ΔAIC Akaike weight

Max MinB MinE LengthB Peak LengthE Flat 1348.85 2.00 0.23
Max MinB MinE LengthB Peak LengthE 1346.85 0.00 0.65
Max Min LengthB Peak LengthE 1350.89 4.03 0.08
Max MinB MinE Length Peak Flat 1355.00 8.14 0.01
Max Min Length Peak Flat 1355.00 8.14 0.01
Max LengthB Peak LengthE 3592.62 2245.76 0.00
Max Length Peak 3577.92 2231.06 0.00
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2.3. Density probability of the sum of NB using convolution of NB random
variables

When ∼X NB r p( ; )i i i , the distribution of ∑ Xi is a mixture NB
(Furman, 2007) (the name of some variables has been replaced to
prevent confusion with Eq. (1) above), with the mixture parameter
∑ +r Gi , where G is an integer random value with a probability mass
function (see Theorem 2, Eqs. (13), (3)–(5) in Furman, 2007):

prγ = Rδγ, γ = 0, 1, …

where ∏= ⎛
⎝
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Fig. 1. Model of the nesting season based on AIC for
Leatherback nesting in French Guiana (Gratiot et al., 2006
data) for (A, C) low nesting season (35 tracks during the
season) and (B, D) high (2762 tracks during the season), (A,
B) Poissonian and (C, D) negative binomial distributions.
Black dashed lines are the limits of the confidence interval
(95%) of the maximum likelihood model and red dashed lines
are the limits of the confidence interval (95%) of the daily
counts. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Probability that negative binomial model is selected against Poissonian one based
on Akaike weight for total track numbers from 50 to 3000 (only values up to 1000 are
shown).

Table 2
Point estimate and standard error (SE) for the date of the peak of the nesting season and
durations of the nesting season using different monitoring strategies with a total of 35
nests during the nesting season. NA indicates that standard error could not be estimated.

Lag Daily counts Daily counts and sum Only sum

LengthB
1 48.51 (13.93)
3 1.14 (NA) 48.89 (10.99) 49.13 (13.42)
4 33.31 (19.72) 49.88 (13.53) 48.37 (9.44)
5 47.15 (23.22) 47.23 (9.65) 48.05 (9.07)
6 5.44 (NA) 47.89 (11.77) 49.41 (11.07)
7 5.07 (NA) 47.50 (9.62) 48.36 (9.52)
8 8.41 (NA) 47.11 (13.97) 49.19 (16.34)
9 48.52 (NA) 48.68 (13.91) 50.53 (6.93)
10 50.12 (25.63) 47.75 (9.49) 42.62 (12.96)

P
1 165.77 (9.09)
3 148.01 (NA) 165.75 (7.83) 165.66 (8.51)
4 161.40 (12.76) 166.33 (8.43) 165.98 (8.53)
5 160.95 (14.33) 165.38 (7.93) 165.98 (8.31)
6 151.70 (NA) 166.02 (8.82) 165.26 (9.19)
7 141.03 (NA) 165.51 (8.83) 165.51 (8.77)
8 154.22 (NA) 166.10 (9.29) 165.54 (10.52)
9 165.77 (NA) 165.61 (9.12) 164.90 (7.87)
10 162.53 (12.92) 169.23 (9.52) 163.97 (9.65)

LengthE
1 48.51 (13.93)
3 1.14 (NA) 48.89 (10.99) 49.13 (13.42)
4 33.31 (19.72) 49.88 (13.53) 48.37 (9.44)
5 47.15 (23.22) 47.23 (9.65) 48.05 (9.07)
6 5.44 (NA) 47.89 (11.77) 49.41 (11.07)
7 5.07 (NA) 47.50 (9.62) 48.36 (9.52)
8 8.41 (NA) 47.11 (13.97) 49.19 (16.34)
9 48.52 (NA) 48.68 (13.91) 50.53 (6.93)
10 50.12 (25.63) 47.75 (9.49) 42.62 (12.96)
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This solution was implemented in the R package HelpersMG
(Girondot, 2017a): functions dSnbinom(), pSnbinom(), qSnbinom() and
rSnbinom().

2.4. Test on simulated sampling design with complete data

A year-round time series with T= 2762 leatherback track daily
counts (ti with i from 1 to 365) obtained in French Guiana was used
(Gratiot et al., 2006). This time-series is available in the R package
phenology (Girondot, 2017b). Cross products have been used to gen-
erate time series with total track numbers being S = 35 and from
S = 50 =t S T t( / )i i

' to 3000 by step of 50 using
Numbers have been rounded to the nearest integer. The time series

with 35 and 2762 tracks were transformed to mimic a protocol in which
the beach was monitored every 3–10 days. Several alternatives were
considered:

• Only tracks from a last night were counted;

• All tracks more recent than a previous survey are counted. All
counted tracks are erased after counting to prevent recounting them
during the next patrol (Chevalier and Girondot, 1998).

• Tracks from the previous night were identifiable accurately as being
from the last night but that older tracks were still visible without

being able to assign a precise date. All tracks are erased after
counting to prevent recounting them during the next patrol
(Chevalier and Girondot, 1998).

The model of the seasonality of nesting is based on Girondot (2010).
This model was preferred among the dozen available because: (i) it
performed among the best based on an extensive test (Whiting et al.,
2014), (ii) its parametric definition allows the standard error to be
minimized and (iii) the parameters have direct biological interpreta-
tions. This model is summarized here briefly.

The model can be applied on nest or track counts depending on the
available data but it must be remained consistent for one analysis.
Assuming that t is a day of the year, the number of nests deposited per
night is modeled using the system of equations as follows:

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪⎪

< →
∈ − → + − − − − −

+
∈ − + →

∈ + → + − + − + −

+
> →

t B MinB
t [B, P F/2] ((1 cos(π(P F/2 t)(P F/2 B)))/2)(Max MinB)

MinB
t [P F/2, P F/2] Max

t [P F/2,E] ((1 cos(π(t P F/2)(E P F/2)))/2)(Max MinE)

MinE
t E MinE

(3)

The model requires seven parameters at most. The formulas were
constructed to allow the parameters to have direct biological inter-
pretations:

• MinB is the mean nightly nest number before the beginning of the

Fig. 3. Fitted nesting season with 35 tracks based on simu-
lated sampling design; in the first column, daily counts are
recorded every x days (x = 4, 7 and 10) and in the second
column, the older tracks between two monitoring sessions are
also recorded. Black dashed lines are the limits of the con-
fidence interval (95%) of the maximum likelihood model and
red dashed lines are the limits of the confidence interval
(95%) of the daily counts. Green lines are the average number
of nests when counts are available only for several con-
secutive days. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version
of this article.)
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nesting season;

• MinE is the mean nightly nest number after the end of the nesting
season;

• Max is the mean number of nests at the peak of the nesting season;

• P is the day of the year on which the nesting season peaks;

• F is the number of days around the day P on which the curve flattens
out;

• B is the day of the year on which the nesting season begins;

• E is the day of the year on which the nesting season ends.

Whereas a nesting season is described by segments, the equations
make all the segments remain in continuity. A nesting season is defined
as the interval [B, E]. Various constraints can be set up to simplify this
model: Min =MinB = MinE, for the same number of nests outside of
the nesting season; MinB and/or MinE= 0, when no nests are observed
outside of the nesting season; L = P − B = E− P, when the nesting
season is symmetric around P with L being half the length of the nesting
season; F= 0, for no flat portion. Rather than fitting B and E, it is more
convenient to fit LengthB = P-B and LengthE= E − P with
LengthB > 0 and LengthE > 0 to ensure that B < P < E.

Parameter fitting was performed using maximum likelihood with
Poissonian or negative binomial daily nest distribution using values
produced by Eq. (3) as theoretical values and the observed counts ti as
observations. Akaike Information Criterion (AIC) (Akaike, 1974) and
Akaike weight (Burnham and Anderson, 2002) were used for model
selection. In short, AIC evaluates the quality of the fit that penalizes for
overfitting too many parameters and Akaike weight gives the relative
support of the different models, i.e. the probability for each model to be
the best one.

The adjustment was done using the R package phenology available

in The Comprehensive R Archive Network (https://cran.r-project.org)
that implements this model (Girondot, 2017b).

3. Results

3.1. Model selection for daily time series of nest counts

The complete time series with 35 and 2762 tracks were initially
fitted using negative binomial distribution with all seven parameters
and the model was then simplified based on model selection using AIC.
Negative binomial distribution was used because Poissonian distribu-
tion is a special case of negative binomial distribution where the var-
iance is equal to the mean. For low density beaches (35 tracks per year),
the selected model was Max, Length, and P. For high-density beaches
(2762 tracks per year), the selected model was Max, MinB, MinE,
LengthB, P, and LengthE (Table 1). The difference of model selection
indicates that a more complex model can be selected for the statistical
power associated higher track number but a simpler model is appro-
priate when total tracks is lower. The most complex combination of
parameters will be used hereafter for these two timeseries. The fits of
the complete time series of nest counts are shown in Fig. 1C for situa-
tion with 35 nests during all the season and in Fig. 1D for situation with
2762 nests. Asymmetry was observed with a more abrupt decline of
nest numbers after the Peak than the rise before the Peak; as a con-
sequence, the Peak was shifted to the right of the distribution.

The model fits of the same two time series using Poisson distribution
are shown in Fig. 1A and B (low and high density, respectively). The
AIC was better for Poisson distribution for the time series with 35 tracks
(Akaike weight = 0.74) whereas it was better for the negative binomial
distribution for the time series with 2762 tracks (Akaike

Fig. 4. Fitted nesting season with 2762 nests based on si-
mulated sampling design; in the first column, daily counts are
recorded every × days (x = 4, 7 and 10) and in the second
column, the older tracks between two monitoring sessions are
also recorded. Black dashed lines are the limits of the con-
fidence interval (95%) of the maximum likelihood model and
red dashed lines are the limits of the confidence interval
(95%) of the daily counts. Green lines are the average number
of nests when counts are available only for several con-
secutive days. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version
of this article.)
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weight = 1.00). Using the Poisson distribution with the high-density
time series, 20% of the observations lay out of the mean ± 2.SD en-
velope indicating that Poisson distribution is not adequate. Proportion
of counts out of the mean ± 2.SD envelope using negative binomial
was 5% as expected. When time series with different total nest number
are generated, Poisson distribution was selected for< 500 annual
tracks whereas a negative binomial was selected for> 500 tracks
(Fig. 2). The same limits should be used if nest counts are used rather
than track counts.

3.2. Nesting season fit with partial temporal monitoring

Subsequently, data with surveys at 3–10 days time lags were fitted
using the same models. The date of the peak (measured as an ordinal
date) and the length of the nesting season (LengthB, LengthE) with their
standard errors were used as criteria to evaluate the quality of the fit.
When only daily counts were used (column Daily counts in Tables 2 and
3), the fit was impossible for the beach with lower track number (Fig. 3,
first column) but was possible with the high-density nesting beach
(Fig. 4, first column). However, the quality of the estimates as well as
the standard errors worsens when lag was higher (Table 3).

For the low-density nesting beach, the model fit with data nest
counts summed over a range of time lags was always possible and gave
outputs very similar to the situation with daily monitoring. For the
high-density nesting beach, a convolution model for the likelihood of
the sum of negative binomial can be applied regardless of the number of
tracks or days. The point estimates and standard errors were similar and
were not impacted by the survey time lag (Tables 2 and 3).

4. Discussion and conclusion

Population status and trend assessment can have important social,
political and economic implications. Status, trends, and knowledge of

threats are important criteria for listing species in the IUCN’s Red List
assessments (Bland et al., 2016). Given that money and time are usually
limited, conservation biologists are faced with the nontrivial task of
how to optimize information on trends with limited resources (Taylor
and Gerrodette, 1993). We illustrate a range of monitoring strategies
that are more efficient than daily monitoring but that give similar
quantitative outputs. In this modelled scenario, a saving of time or
expenses could hypothetically be reallocated to other tasks. Depending
on the accessibility of the monitored site, the saved resources could be
substantial enough to justify applying a mixed sampling strategy using
daily counts and the sum of previous counts as presented here.

The index methodology proposed here can be applied to any si-
tuation when the counted items stay visible for several days in the
environment. This includes tracks left by marine turtles on sandy bea-
ches but also artefacts left in the ecosystem (e.g., feces, activity traces
on trees, tracks on snow). In all of these situations, it is possible to count
the sum of artefacts during a monitoring session and compare the re-
sults between the current and previous monitoring. It is important to
mark artefacts to not recount them during a following survey; they can
be removed from the ecosystem or marked with paint or other special
features (e.g., making deep marks on sand with a wooden stick). If it is
not possible to safely identify artefacts from the previous day as com-
pared to older ones, the method can still be applied (see Tables 1 and 2,
columns Only sum).

The survey time lags that can be applied depend on the persistence
of artifacts in the environment, upon artifact distinctiveness (deeper
leatherback tracks will persist longer than light Kemp’s ridley tracks)
and other environmental factors (windy or rainy periods that obscure
tracks, sand moisture or dryness that affect track formation). The
management of the monitoring design should be adaptive to take into
account environmental conditions. It is important to calibrate the vis-
ibility of tracks with the chosen lag; a simple way to validate the lag is
to check whether the known tracks already counted during the previous
monitoring session are still visible. This can be done using recorded GPS
positions of the previous tracks. If they are no longer visible, the time
lag was too large and only the most recent tracks should be used. The
lag should then be diminished for the next monitoring session. In the
context of marine turtle tracks, not every crawl of a female sea turtle on
the beach results in a nest; for instance, a female is testing the beach or
disturbed before oviposition, dry sand collapses the nest chamber and it
may abandon the nesting attempt before laying eggs. If tracks from non-
nesting and nesting turtles are confounded during monitoring, this may
strongly bias the estimated number of nests laid during a given night.
Distinguishing between crawls with successful nesting or those without
is thus particularly vital to distinguish. It has therefore been advocated
to count all tracks as a measure of activity of marine turtles on a nesting
beach (SWOT Scientific Advisory Board, 2011).

Beaches without or with very few nests should not be omitted from the
sampling design. Several arguments justify the monitoring of beaches,
however infrequently, where turtles are not currently nesting. Firstly,
nesting effort could be low and therefore overlooked by light monitoring.
Secondly, even if turtles are not using a beach it does not mean they will
never use it. Shifts of nesting beach caused by erosion or colonization of
new beaches can occur. If there are no data for a particular beach it will be
impossible to show that any colonization has occurred. The methods
proposed here generates results with fewer costs than daily monitoring
and it may be very useful in a context of changing environment.
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Table 3
Point estimate and standard error (SE) for the date of the peak of the nesting season and
durations of the nesting season using different monitoring strategies with a total of 2762
nests during the nesting season.

Lag Daily counts Daily counts and sum Only sum

LengthB
1 94.39 (5.19)
3 92.00 (8.30) 93.63 (5.71) 92.19 (6.88)
4 96.19 (8.44) 94.49 (6.02) 92.08 (7.65)
5 88.92 (10.78) 92.97 (6.06) 92.13 (6.46)
6 108.05 (10.46) 94.05 (6.22) 91.65 (6.83)
7 113.17 (16.83) 91.32 (6.48) 92.47 (6.40)
8 89.08 (12.15) 92.47 (5.87) 90.55 (8.85)
9 118.22 (15.96) 89.67 (5.16) 88.59 (4.73)
10 81.67 (10.03) 89.94 (5.28) 88.63 (7.16)

P
1 174.49 (4.15)
3 172.68 (6.51) 173.77 (4.65) 172.27 (5.69)
4 176.27 (6.54) 174.31 (4.98) 172.05 (6.50)
5 171.69 (8.45) 173.14 (4.99) 172.18 (5.25)
6 184.50 (7.46) 174.37 (5.14) 172.15 (5.59)
7 186.95 (13.15) 171.69 (5.38) 173.06 (5.21)
8 174.20 (8.46) 173.15 (4.72) 171.32 (7.43)
9 186.75 (11.28) 171.22 (4.08) 170.57 (3.70)
10 161.10 (7.87) 171.46 (4.07) 170.62 (5.74)

LengthE
1 64.33 (5.93)
3 68.04 (9.14) 65.64 (6.85) 68.50 (8.07)
4 63.67 (8.96) 65.00 (7.38) 69.15 (9.74)
5 67.06 (11.87) 66.92 (7.64) 68.80 (7.06)
6 53.89 (10.80) 64.22 (7.94) 68.31 (7.67)
7 39.85 (16.35) 70.04 (8.24) 66.64 (7.32)
8 67.42 (10.25) 67.17 (6.28) 70.52 (10.35)
9 52.21 (15.42) 70.46 (6.26) 71.29 (4.75)
10 78.67 (11.20) 69.02 (5.54) 70.34 (8.04)
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