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INTRODUCTION
Chelonians arose 210–230 million years ago (MYA) during the late
Triassic as heavily armoured terrestrial forms, though all turtle
species alive at present (terrestrial as well as aquatic) are believed
to have evolved from aquatic ancestors (Joyce and Gauthier, 2004).
The basic chelonian body plan differs from the typical reptilian
pattern in many features, especially in terms of reduced vertebral
articulation, the presence of a rigid bony shell and the location of
the girdles within the rib cage (Romer, 1956). The rigid shell, which
is a novel structure amongst tetrapods (Gilbert et al., 2001), forms
a solid box composed of two parts: a dorsal carapace and a ventral
plastron. The carapace is formed from costal bones with fused ribs,
neural bones with fused thoracic vertebrae, and marginal bones
(Gaffney and Meylan, 1988; Zangerl, 1980). The plastron of turtles
is primitively formed from one unpaired and eight paired ossification
centres, elements of which have homologies with clavicles and
interclavicles (Romer, 1956; Gilbert et al., 2001). The carapace and
the plastron are joined at the lateral margin (shell bridge) and enclose
the pectoral and pelvic girdles (see Romer, 1956; Burke, 1991).

The fusion of the rib cage and shell constrains several aspects of
turtle biology. The viscera can only occupy a restricted volume, so,
for example, the chelonian body plan complicates turtle breathing
(Gans and Gaunt, 1969). On land and in water, turtles exclusively
use their appendicular system in locomotion, because the trunk is
effectively rigid, prohibiting lateral or vertical undulation. The shell
restricts the range of limb movement (Zug, 1971). The retraction

of the forelimbs and the protraction of the hindlimbs are both
restricted by the shell bridge.

The evolutionary radiation of turtles on land and water has
resulted in a great variety of modifications of the basic shell shape
[see Renous et al. (Renous et al., 2008) for a recent synthesis].
Zangerl (Zangerl, 1980) and Lapparent de Broin et al. (Lapparent
de Broin et al., 1996) have noted that there is a general tendency
in aquatic turtles towards an incomplete and reduced paedomorphic
shell. However, in the great majority of turtles the constraining
arrangements of bony carapace, plastron and shell bridge remain,
even if they are much reduced and some flexibility is introduced
(e.g. by incorporation of cartilaginous material, as in the trionychid
softshell turtles).

The leatherback sea turtle, Dermochelys coriacea (Vandelli 1761),
the sole living species of the Dermochelyidae, is a very unusual turtle.
The Dermochelyidae diverged from other turtles 100–150MYA.
Other extant marine turtles (Cheloniidae) are not closely related,
having all evolved in the middle Tertiary some 35–50MYA (Zangerl,
1980). This remote relationship was confirmed by molecular studies
(Bowen et al., 1993). The leatherback is by far the largest living turtle
species, adult animals typically weighing approximately 400–500kg.
The heptagonal leatherback shell structure differs greatly from the
basic chelonian pattern (Deraniyagala, 1936; Deraniyagala, 1939).
The carapace consists of several thousand small ossicles of irregular
shape, joined to form a flexible mosaic that collapses quickly after
death, making palaeontological investigations difficult. Much of the
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SUMMARY
Typical chelonians have a rigid carapace and plastron that form a box-like structure that constrains several aspects of their
physiology and ecology. The leatherback sea turtle, Dermochelys coriacea, has a flexible bony carapace strengthened by seven
longitudinal ridges, whereas the plastron is reduced to an elliptical outer bony structure, so that the ventrum has no bony support.
Measurements of the shell were made on adult female leatherbacks studied on the feeding grounds of waters off Nova Scotia (NS)
and on breeding beaches of French Guiana (FG) to examine whether foraging and/or breeding turtles alter carapace size and/or
shape. NS turtles exhibited greater mass and girth for a given curved carapace length (CCL) than FG turtles. Girth:CCL ratios rose
during the feeding season, indicating increased girth. Measurements were made of the direct (straight) and surface (curved)
distances between the medial longitudinal ridge and first right-hand longitudinal ridge (at 50% CCL). In NS turtles, the ratio of
straight to curved inter-ridge distances was significantly higher than in FG turtles, indicating distension of the upper surfaces of
the NS turtles between the ridges. FG females laid 11 clutches in the breeding season; although CCL and curved carapace width
remained stable, girth declined between each nesting episode, indicating loss of mass. Straight to curved inter-ridge distance
ratios did not change significantly during the breeding season, indicating loss of dorsal blubber before the onset of breeding. The
results demonstrate substantial alterations in size and shape of female D. coriacea over periods of weeks to months in response
to alterations in nutritional and reproductive status.

Key words: leatherback turtle, feeding, shape change, girth.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



3475Leatherback shape changes

mosaic is extremely thin (3–4mm) (Wood et al., 1996), but the
carapace is strengthened by seven acute longitudinal ridges that run
from the front of the carapace to its triangular rearmost portion (Fig.1).
Bony elements of the plastron of D. coriacea are centrally absent,
being reduced to a thin elliptical bone (Boulenger, 1889; Wood et
al., 1996; Wyneken, 2001). Although the plastron is tough, relatively
inflexible and contains dermal ossicles, there is no ventral axial bony
protection for the viscera. This situation is quite unlike all other living
turtles; Dermochelyidae appear to have progressively lost the central
bony part of the plastron during their evolution as there is persuasive
evidence that some fossil forms had plastral mosaics (Wood et al.,
1996). All of the dorsal and ventral portions of the skeletal elements
of the shell are covered by a thick, flexible, fibrous skin and lined
with blubber. The ossicles of the carapace are lined ventrally with
blubber. In a large male leatherback the skin was at least 1cm thick
and the blubber 2.8cm thick in the plastral region, 2.5cm thick in the
carapacial region and approximately 5cm thick at the bases of the
four limbs (Davenport et al., 1990). Given the absence of bony
elements in most of the plastron and a flexible carapace, the
leatherback anatomy delivers a compliant structure already known to
expand and compress in the ventral region during respiration
(Lutcavage and Lutz, 1997). The ventrum has five reduced ridges,
but these are compliant apart from ossified knobs (Boulenger, 1889).

The leatherback is also highly unusual in terms of its feeding
ecology, biogeography and physiology. Dermochelys coriacea is
an obligate feeder on gelatinous organisms, predominantly medusae,
pyrosomas and siphonophores, throughout its life (den Hartog and
van Nierop, 1984; Davenport and Balazs, 1991). Its diet is, therefore,
of low calorific value for a carnivore (for discussion, see Doyle et
al., 2007). This means that it has to eat very large quantities of food
(Duron, 1978), from more than 100%bodyweightday–1 in hatchlings
(Lutcavage and Lutz, 1986), to at least 50%bodyweightday–1 in
adults (Davenport, 1998), far more than the volumes consumed by
rigid-shelled cheloniid sea turtles. Bels et al. described how D.
coriacea has a unique ability to simultaneously catch and swallow
prey with a conveyor-like action, so that leatherbacks effectively

graze on concentrations of gelatinous organisms (Bels et al., 1998).
Despite their low-calorie diet, D. coriacea grow very quickly (for
discussion, see Jones et al., 2011), apparently reaching maturity at
an age of approximately 16years. Jones et al. suggest that
assimilation efficiencies of gelatinous food may be very high, and
contribute to this rapid growth (Jones et al., 2011).

The prey densities of leatherbacks are geographically very patchy
and the turtles migrate annually over long distances between food-
poor areas in the tropics and food-rich feeding areas in cool
temperate coastal waters (e.g. James et al., 2005; Hays et al., 2006;
Fossette et al., 2010a; Fossette et al., 2010b). Adult D. coriacea are
well known to have core body temperatures elevated over ambient
when in cool water (e.g. off Newfoundland and Nova Scotia) by
virtue of large size (gigantothermy), blubber composition and
countercurrent heat exchangers (Frair et al., 1972; Paladino et al.,
1990; Davenport et al., 1990; James and Mrosovsky, 2004). Bostrom
et al. have recently shown that even small juvenile turtles (16–37kg)
can sustain temperature gradients between the body and the external
environment (Bostrom et al., 2010), so that D. coriacea is truly
endothermic. There is good palaeoecological evidence that the
capacity for Dermochelyidae to penetrate cool waters (and hence
require endothermy/gigantothermy) is ancient (>40MYA) (Albright
et al., 2003).

It is already known that female leatherback turtles on feeding
grounds off Nova Scotia are far heavier (by approximately 33%)
for a given carapace length than females laying eggs on beaches in
French Guiana (James et al., 2005; Georges and Fossette, 2006).
Variations in body mass (condition) without apparent change in shell
dimensions are well known from a variety of turtles, and are
particularly associated with hibernation in terrestrial species (e.g.
Hailey, 2000) and in female cheloniid sea turtles during the breeding
season (e.g. Hays et al., 2002; Santos et al., 2010). Although
leatherbacks in Canadian waters clearly carry much fat around the
head, neck, pectoral and pelvic regions (Fig.2), we hypothesised
that the flexible shell of D. coriacea allows the animal to change
its body size and shape in response to the demands of its
biogeography and life history, whilst optimizing visceral function
and locomotion. We would expect females to show a ‘thin’
appearance (flat/concave plastral surface, more prominent carapacial
ridges) when anorexic and with depleted blubber and ovaries at the
end of the breeding season. However, we would expect well-fed
turtles on the feeding grounds to exhibit a more rotund appearance
(convex plastral surface, less prominent carapacial ridges) to
accommodate both blubber and large volumes of jellyfish. The aim
of this study was to test this hypothesis by investigating a continuous
population of leatherbacks known to feed off eastern Canada (Nova
Scotia, Newfoundland) and breed over extensive parts of the
Caribbean, including French Guiana (James et al., 2007).

MATERIALS AND METHODS
Leatherback turtles were captured at sea in the summers of
2007–2010 off Nova Scotia using methods as described by James
et al. (James et al., 2007). Curved carapace length (CCL) and curved
carapace width (CCW) were measured for putative female turtles
with CCL >142cm (N46), which approximates the size range of
nesting leatherbacks found on Western Atlantic beaches (Stewart
et al., 2007). All turtles were categorized as male or female on the
basis of tail length, which is consistently dimorphic (tails are longer
in males) in animals >142cm CCL; they were sexed by the same
observer (M.C.J.). Data for males are not considered in this paper
as none are available for males in the breeding areas. When possible,
other indices of body condition were collected, including girth at

MR

R1

Longitudinal
ridges

R2

Fig.1. Diagram of the dorsal surface of an adult leatherback turtle. MR,
medial ridge; R1, R2, lateral ridges. Horizontal line indicates position of
girth and inter-ridge measurements [at 50% curved carapace length (CCL)].
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50% CCL (N31; Fig.1) and mass (N15). In some cases (N22)
it was also possible to measure the distance between the medial
longitudinal ridge (MR) and the nearest lateral ridges (R1) on both
sides, both directly (straight) and along the dorsal surface (curved)
at the 50% CCL level (Figs1, 3). All measurements were made to
the nearest millimeter with inextensible metal tapes. Measurement
of R1–R2 (Fig.1) was not feasible at sea.

One hundred and eighty-two female turtles were investigated
during the 2005 breeding season at Awala Yalimapo beach,
French Guiana (5.7°N, 53.9°W), as described by Georges and
Fossette (Georges and Fossette, 2006). CCL, CCW and girth were
measured (to 0.5cm) for all turtles after they had laid the first
clutch of the breeding season. During the 2010 breeding season,
33 females were remeasured on the same beach for these same
variables after they had laid each clutch (i.e. repeated measures).
As clutch number was very variable (≤11) amongst females, this
meant that the number of turtles measured declined during the
breeding season (in addition, it was sometimes not possible to
measure a female after oviposition). In the case of those 33
animals it was also possible to measure the distance between MR
and R1, and between R1 and R2 on both sides, both directly
(straight) and along the dorsal surface (curved) at the 50% CCL
level (Figs1, 3).

RESULTS
Comparisons of length (CCL), girth and girth:CCL ratios

between turtles from Nova Scotia and French Guiana
Data are summarized in Table1. Analysis by one-way ANOVA was
used (except in the case of girth comparisons), preceded by a
normality test (Anderson–Darling) plus F-tests and Levene’s tests
for homogeneity of variance. Data sets for CCL, and girth:CCL ratio
were normal and homogenous. The girth data set for French Guiana
(FG) was non-normal, so FG and Nova Scotia (NS) girths were
compared using a nonparametric test (Kruskal–Wallis). ANOVA

J. Davenport and others

showed that mean FG CCL was significantly greater (by 4.7cm;
3.03%) than mean NS CCL (F24.9, P0.004). We would therefore
expect FG girth to be greater than NS girth from known mass–length
relationships (Georges and Fossette, 2006). However, the mean NS
girth was significantly greater (by 15.3cm; 7.69%) than mean FG
girth (a Kruskal–Wallis test of the median girths of the two samples
revealed a significant difference; H17.7, P<0.0005). NS turtles had
a much greater girth for a given CCL than FG turtles.

Changes in girth:CCL ratio during presence in Nova Scotia
waters

It is not logistically feasible to follow the growth of individual turtles
when on the northern feeding grounds. Turtles sometimes arrive in
June, but most are present in July and August. The relationship
between the girth:CCL ratio and day-of-year (ordinal date) of capture
and measurement during 2007–2009 is presented in Fig.4. Simple
linear regression analysis demonstrated a significant positive
relationship (r20.306 P0.001), with the ratio rising with elapsed
time during the year. This indicates that the females became
relatively more rotund (greater girth for a given CCL) between
arriving on the feeding grounds and departing.

Comparison of inter-ridge shapes in turtles from Nova Scotia
and French Guiana

There was no statistically significant difference between MR–R1
distances (see Fig.1 for definitions) on the left and right for either

Fig.2. Above: Nova Scotian female leatherback (courtesy of Canadian Sea
Turtle Network, 2010; with permission), demonstrating deposition of blubber
in neck, pectoral and pelvic areas. Note the smooth surface between
longitudinal ridges. Below: female turtle on a breeding beach in French
Guiana (courtesy of V. Plot, with permission). Note lack of fat rolls on neck
and at bases of flippers. Note also the marked indentation in skin between
longitudinal ridges of the carapace.

MR

R1

Measuring
tape Straight

distance

Curved
distance

Fig.3. Photograph of the dorsal surface of a female leatherback turtle taken
at night (from the rear) whilst nesting in French Guiana (courtesy of V. Plot,
with permission). MR, medial ridge, R1, lateral ridge nearest to MR. White
lines have been added to indicate curved and straight inter-ridge distances
measured in this study.

Table1. Mean (±s.d.) curved carapace length (CCL) and body girth
(measured at 50% CCL) in female leatherback turtles sampled in

waters off Nova Scotia, Canada, and studied on breeding beaches
in French Guiana

French Guiana (N182) Nova Scotia (N29)

CCL 159.3±6.83 152.4±7.56
Girth 198.9±14.04 214.2±12.58
Girth:CCL 1.249±0.074 1.386±0.086

All measurements are in centimeters. Values of the girth:CCL ratio are also
given for both samples.
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NS or FG turtles (ANOVA, P>0.05). Accordingly, all analyses were
carried out on data for the right-hand side of turtles. For both groups
of turtles, (MR–R1 straight)/(MR–R1 curved) was computed. This
straight:curved ratio is close to 1 if there is little difference between
the two measurements, but is lower if there is a deeper curve. Ratio
data (NS: N22, mean ± s.d. straight:curved ratio0.9833±0.008;
FG: N33, mean straight:curved ratio0.9635±0.016) were normal
(Anderson–Darling test: NS, P0.081; FG, P0.894), but variances
were not homogenous (F-test, Levene’s test) because NS data were
much less variable than the FG data. Accordingly, a non-parametric
Kruskal–Wallis test was used to compare median straight:curved
ratios (NS, 0.9841; FG, 0.9652). There was a significant difference
between the medians (H20.9, P<0.0005). The ratio was
significantly higher for NS females, indicating that these females
had significantly less indented upper surfaces than FG nesting
females.

Changes in female CCL, CCW and girth during the breeding
season in French Guiana

Individual leatherback females laid several (≤11) egg clutches at
regular intervals (~10days) during a single breeding season on
beaches in French Guiana. Because of repeated irregular
measurements we used a linear mixed-effects model (LME; using
R 2.10.1 for Windows; www.r-project.org) with the turtles’ ID as
a random factor to take into account the pseudo-replication within
the data set. Measurements of females up to the eighth clutch were
considered in these analyses, as eight is the average number of
clutches laid by leatherback females in the French Guiana
population. The results showed that females’ CCL and CCW did
not change throughout the breeding season (LME, P0.2969 and
P0.2846, respectively, N33) whereas girth decreased significantly
(LME, P<0.001; coefficient a–1.6, N33). Fig.5 shows that CCL
and CCW of such females were stable, but girth declined
considerably with clutch number. For 14 females, the mean change
in measurement (cm) of CCL, CCW and girth measured after laying
clutch 1 and clutch 8 were –0.79±0.80, +0.07±1.21 and –11.36±3.91,
respectively, again confirming the stability of CCL and CCW, but
changeable girth.

Changes in female inter-ridge shape during the breeding
season in French Guiana

LME was also used as described above, but was preceded by a
Box–Cox transformation in order to achieve normality of the ridge
ratio data. The model showed that the ridge ratio did not change
significantly (LME, P0.37, N33). There was no significant
change in shape of the upper surface of the carapace during the
breeding season.

DISCUSSION
This study has necessarily been limited to female leatherback turtles
as males are inaccessible on the tropical feeding grounds. There is
no anatomical reason why males should not show similar alterations
in body shape, but by analogy with recent studies on loggerhead
turtles (Caretta caretta) by Hays et al. (Hays et al., 2010), their
magnitude and timing are likely to be different, because it is probable
that breeding frequencies and durations of residence of breeding
and feeding grounds will differ between the sexes.

From our study it is evident that the shape of the shell of female
D. coriacea can change in two ways. First, the girth can alter, both
between low latitude Caribbean breeding beaches and the feeding
grounds off Nova Scotia, and during the feeding and breeding
seasons themselves. The girth increases on the feeding grounds and
decreases by the beginning of the breeding season, presumably as
a result of blubber loss caused by a combination of the costs of
southward migration and part of the investment in reproduction
(which will continue during the breeding season). The girth
decreases still further during the breeding season as each clutch of
eggs is laid. Roughly speaking, for a turtle of 150cm the difference
in girth between a well-fed animal off Nova Scotia and a female at
the end of the breeding season will be approximately 30cm (ca.
15% of girth).

Second, the shape of the dorsal surface is changeable, as
hypothesised. Well-fed animals off Nova Scotia have smoother
dorsal surfaces, with less prominent longitudinal ridges than nesting
females on the beaches of French Guiana (Fig.2). This presumably
reflects the deposition of blubber beneath the dorsal skin (which
stretches) evident in dissections of stranded and drowned animals
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at high latitude (e.g. Davenport et al., 1990). Interestingly, the
measured shape of the dorsal surface does not change during the
breeding season itself, even though the turtle may lay ≤11 clutches
and show marked reductions in girth. This suggests that the blubber
beneath the dorsal skin and carapace is largely exhausted by the
beginning of the breeding season. However, these statistical
conclusions contrast with field observations where some females
appear to have more prominent carapace ridges, and a more concave
carapace at the end of the breeding season, up to a stage where their
sacral vertebrae may be visible underneath the skin. The non-
statistical significance in the change of the ridge ratio may reflect
the position of the measurements (mid CCL).

Fig.6 shows data for the length–body mass relationships of NS
and FG females. For FG females it may be calculated that a turtle
with a CCL of approximately 150cm will have a body mass of
approximately 300kg. From the data presented by James et al.
(James et al., 2005) we know that such a female will weigh
approximately 400kg when in waters off Nova Scotia. A female
turtle of CCL 150cm has a surface shell area of approximately 3m2

[estimated from a leatherback drawing (Fig.1) scaled to a carapace
length of 150cm]. If we assume an average blubber thickness when
in northern waters of approximately 3cm (cf. Davenport et al., 1990),
this translates into a volume of some 90l of blubber (roughly 72kg,
assuming a fat density of 0.8gml–1) lining the shell and surrounding
the viscera. There are no data for blubber thickness in nesting
females, but even if all blubber (i.e. 72kg) is used up during
migration and reproduction, it can only explain approximately 72%
of the discrepancy in mass (100kg) between NS and FG females.
The remainder (approximately 28kg) is presumably stored in the
obvious rolls of fat seen around the neck, pectoral and pelvic regions
of females seen on the northern feeding grounds (Fig.2). These

J. Davenport and others

approximate calculations suggest that the distended shell
accommodates approximately three-quarters of the accumulated fat.
It is already well known that female D. coriacea demonstrate the
highest maternal investment of all living reptiles (for reviews, see
Wallace et al., 2006; Wallace et al., 2007). They lay multiple
(normally seven to eight, but <11) large egg clutches (approximately
65 eggs per clutch) of the largest eggs (80–90g each and
approximately 53mm diameter) of any sea turtle and do so every
2–4years for decadal periods (Spotila et al., 1996). From the data
of Miller (Miller, 1997) and Reina et al. (Reina et al., 2002b) it can
be estimated that a female may lay approximately 35kg of eggs
(equivalent to approximately 37l volume) per breeding season.
Unlike all other turtles, leatherback females also lay very variable
numbers of shelled albumen gobs (formerly known as yolkless eggs)
that have an uncertain function (Wallace et al., 2007). Hence it is
probable that a female will deposit approximately 40kg (ca. 42l)
of material in a single breeding season. Although much of the
deposited volume will consist of water (replaceable by drinking
seawater, so involving salt regulation energetic costs), it indicates
the scale of maternal reproductive investment involved in this
species. Feeding opportunities during the breeding season are
limited (but see Fossette et al., 2008; Casey et al., 2010), so much
of the decline in girth between each clutch will presumably reflect
loss of blubber as a result of fasting, as well as (indirectly) a decline
in ovary size.

There is no reason to suppose that the anorexic appearance of
females at the end of the nesting season (Fig.2) is due to dehydration.
Leatherback sea turtles have extremely large salt glands that occupy
a large proportion of the skull volume (e.g. Wyneken, 2001;
Davenport et al., 2009) and produce copious, highly concentrated
secretions; Reina et al. (Reina et al., 2002a) demonstrated that even
desiccated hatchling leatherbacks can drink seawater to recover
water balance within 12h. A 500kg female that has just laid a single
clutch of eggs will have little difficulty in drinking (and desalting)
approximately 4–5l (<1% body volume) of seawater to compensate
for lost water. Moreover, several studies have presented evidence
that females drink during inter-nesting intervals (Myers and Hays,
2006; Fossette et al., 2008; Casey et al., 2010), thus allowing females
to incorporate water into the next clutch.

It is evident that leatherback life history and foraging strategy
are only compatible with a structure that allows substantial
alterations in size and shape over relatively short periods (weeks to
months). An effectively pleated upper surface, combined with a
ventral body wall that can shrink or distend, permit the great
fecundity of this wide-ranging species and the long migration
distances between high latitude foraging and low latitude breeding
grounds. Some hard-shelled turtles (e.g. the green turtle Chelonia
mydas) can show distension of the plastron when well fed (Heithaus
et al., 2007), whereas numerous aquatic chelonian species exhibit
reduced bony elements of the shell and enhanced flexibility (Zangerl,
1980; Lapparent de Broin et al., 1996). However, the considerable
capacity in leatherbacks for distension of both carapace and plastron
is unusual. It also needs to be realized that a compliant body wall
additionally permits intake of huge meals and is a factor in the
species’ remarkable diving ability. Several factors have therefore
driven the evolution of the capacity for D. coriacea to escape many
of the constraints of the ancestral box.
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