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INTRODUCTION

Many marine species undertake migratory move-
ments among distant geographic areas and across
distinct habitats, for feeding, reproduction or devel-
opment. As a result, they may be subject to a diverse

range of threats during their extensive movements.
Sea birds (Catry et al. 2011), marine mammals (Ras-
mussen et al. 2007), large fish (Bonfil et al. 2005,
Rooker et al. 2014) and sea turtles (Hays & Scott
2013) undertake such movements and are known to
play important ecological roles. Understanding their
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ABSTRACT: Marine turtles are highly migratory species that establish multiple connections
among distant areas, through oceanic migration corridors. To improve the knowledge on the
 connectivity of Atlantic green turtles Chelonia mydas, we analysed the genetic composition and
contribution to juvenile aggregations of one of the world’s largest rookeries at Poilão Island,
Guinea-Bissau. We amplified 856 bp mitochondrial DNA (mtDNA) control region sequences of
this population (n = 171) containing the ~490 bp haplotypes used in previous studies. Haplotype
CM-A8 was dominant (99.4%), but it divided in 2 variants when the whole 856 bp was considered:
CM-A8.1 (98.8%) and CM-A8.3 (0.6%). We further identified the haplotype CM-A42.1 (0.6%),
found previously only in juvenile foraging grounds at Argentina, Brazil and Equatorial Guinea.
The Poilão breeding population was genetically different from all others in the Atlantic (FST range:
0.016−0.961, p < 0.001). An extensive ‘many-to-many’ mixed-stock analysis (MSA) including 14
nesting populations (1815 samples) and 17 foraging grounds (1686 samples) supported a strong
contribution of Poilão to West Africa (51%) but also to the Southwest Atlantic (36%). These find-
ings, in particular the strong connectivity within West Africa, where illegal harvesting is still com-
mon, should motivate conservation partnerships, so that population protection can be effectively
extended through all life stages. Our study expands the knowledge on migration patterns and
connectivity of green turtles in the Atlantic, evidences the importance of larger sample sizes and
emphasizes the need to include more finely resolved markers in MSAs and more genetic sampling
from West African foraging grounds to further resolve the connectivity puzzle for this species.

KEY WORDS:  Connectivity · Dispersal · Green turtle · Migration · Mitochondrial DNA · mtDNA ·
Mixed-stock analysis · MSA · Population genetics · West Africa

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 569: 215–225, 2017

dispersal patterns and the links they establish among
different areas is critical to contextualize threats and
inform effective management strategies (Rees et al.
2016).

Marine turtles are long-lived organisms and their
life histories are marked by ontogenic habitat shifts
and large-scale migrations (Bowen & Karl 2007).
Green turtles Chelonia mydas L. associate with ocea -
nic currents after hatching and undergo an oceanic
pelagic stage, which is thought to last ca. 3−5 yr
(Reich et al. 2007). After this period, often referred to
as ‘the lost years’, as the whereabouts of the turtles at
this phase are poorly known, they generally recruit to
coastal habitats, which may change seasonally (Fu -
kuoka et al. 2015), and shift into benthic foraging at a
straight carapace length of 25−35 cm (Bolten 2003).
These neritic zones are used as developmental habi-
tats and turtles may spend several years foraging in
the same area until reaching a size or maturity stage
that triggers them to migrate to additional foraging
areas (Patrício et al. 2011, 2014, Shimada et al. 2014).
Upon reaching maturity, adults make periodic migra-
tions between their neritic foraging areas and natal
rookeries (Bowen & Karl 2007). This complex migra-
tory behaviour creates multiple connections among
distant coastal areas through oceanic migration cor -
ridors (Velez-Zuazo et al. 2008). Genetic studies have
been critical in enlightening such connectivity (En -
calada et al. 1996, Naro-Maciel et al. 2007, Pros-
docimi et al. 2012).

Most studies have used sequences of the control
region of mitochondrial DNA (mtDNA), a maternally
inherited genetic marker (Bowen & Karl 2007). This
marker shows generally high levels of genetic struc-
turing among marine turtle nesting populations
worldwide, supporting the natal homing hypothesis,
in which the females of marine turtles return to the
beaches where they were born to reproduce as a con -
sequence of philopatry (Meylan et al. 1990). In con-
trast, foraging aggregations are usually mixed stocks
composed of individuals from different rookeries
(Bowen & Karl 2007). The high genetic structuring of
nesting populations allows the use of mixed-stock
analysis (MSA; Millar 1987), to estimate contribu-
tions of rookeries (stocks) to mixed foraging grounds
(mixed stocks). A Bayesian MSA (Pella & Masuda
2001) has been widely applied, allowing the incorpo-
ration of informative priors, such as rookery size or
geographic distance. Bolker et al. (2007) sub sequent -
ly developed a ‘many-to-many’ (m2m) MSA, aiming
to simultaneously answer the questions: (1) Where do
the individuals from a given source population go?
and (2) Where do individuals from a given mixed for-

aging ground originate from? Limitations of MSAs
have been pointed out, however, in particular the
assumption that all source populations and mixed
aggregations have been adequately sampled (Proi-
etti et al. 2012). The existence of orphan haplotypes
at juvenile foraging grounds indicates that some
stocks still lack genetic assessment or have not yet
been adequately sampled; hence estimates should be
interpreted cautiously and along with meaningful
ecological data.

One controversial result of recent MSAs of the
Atlantic green turtles is the suggested potential con-
nectivity between Guinea-Bissau, West Africa, and
the Southwest Atlantic. Although MSAs have sup-
ported this migration (Bolker et al. 2007, Monzón-
Argüello et al. 2010, Naro-Maciel et al. 2012), the fact
that the population at Poilão, Guinea-Bissau, was
found to be fixed for the common South Atlantic
haplo type (CMA-8; Encalada et al. 1996, Formia et
al. 2006, Godley et al. 2010) has limited the interpre-
tations of these results. Notably, the discovery of
exclusive haplotypes at low frequency is highly de -
pendent on sample size. This putative migration
seems to involve movements greater than expected,
according to the ‘closest to home’ hypothesis, where
immature turtles tend to move to and settle in forag-
ing grounds closest to their natal beach after recruit-
ing to neritic habitats (Bolker et al. 2007). Addition-
ally, studies using particle dispersal modelling with
major oceanic currents did not support this connec-
tivity (Godley et al. 2010, Putman & Naro-Maciel
2013). However, when Putman & Naro-Maciel (2013)
estimated the origins of the green turtle Atlantic
mixed stocks, tracking particles back through time,
this crossing seemed feasible, albeit at low incidence.
Lagrangian drifter data have further shown this route
to be possible with particle drift (Monzón-Argüello et
al. 2010, Proietti et al. 2012). Finally, a similarly
large-scale migration of post-hatchling green turtles
from Suriname to Cape Verde was supported using
mtDNA (Monzón-Argüello et al. 2010).

With this is mind we investigate 2 questions: (1)
Where do the post-hatchlings from Poilão disperse
to? and (2) Do some of the juveniles found at South-
west Atlantic foraging grounds originate in Poilão?
To answer these questions, we greatly increased the
available sample to characterize the genetic compo-
sition of Poilão’s nesting population, in an attempt to
detect rare haplotypes. We then sought to improve
our understanding of the migration patterns and con-
nectivity among Atlantic green turtle populations by
comparing our results with molecular data (n = 3501
sequences) from 14 nesting populations and 17 for-
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aging grounds, resulting in the most extensive analy-
sis thus far for this species in the Atlantic.

MATERIALS AND METHODS

Study site and sampling

Poilão Island (10° 52’ N, 15° 43’ W) is part of the João
Vieira and Poilão Marine National Park (PNMJVP),
in the Bijagós Archipelago, Guinea-Bissau. It hosts
one of the major green turtle nesting populations
worldwide (Catry et al. 2002, 2009). This population
has been monitored yearly around the peak of the
nesting season (August−September) since 2004. In
2013 and 2014, we collected skin samples from 171
nesting females. Samples were taken from the shoul-
der area using a 6 mm sterile biopsy punch as the
females laid their eggs, and were stored in 96%
ethanol at room temperature. All sampled individu-
als were identified with unique tags on both front
flippers to avoid sample duplication. Furthermore,
the loss of a metal tag leaves scar marks easily recog-
nized within, so we were certain that no previously
tagged individual was mistakenly identified as ‘new’.
Sampling protocols were approved by the research
ethics committee of the University of Exeter and the
government of the Republic of Guinea-Bissau.

Sequencing and haplotype assignment

We extracted DNA using the QIAGEN DNeasy
blood and tissue kit, according to the manufacturer’s
instructions. A fragment of ~860 bp of the mtDNA
control region was amplified using PCR with the
primers LCM15382 (5’-GCT TAA CCC TAA AGC
ATT GG-3’) and H950 (5’-TCT CGG ATT TAG GGG
TTT-3’) (Abreu-Grobois et al. 2006), including the
short region (~486 bp) historically surveyed for green
turtle genetic studies (Encalada et al. 1996, Lahanas
et al. 1998, Bjorndal et al. 2006, Formia et al. 2007).
Amplifications were performed in a total volume of
25 µl, containing 2.5 µl of Taq buffer, 3 µl of dNTPs,
1 µl of MgCl2, 0.5 µM of each primer at 10 µM, and
0.2 µl of Taq DNA polymerase. Cycling conditions
were 94°C for 5 min, followed 35 cycles at 94°C for
1 min, 55°C for 1 min and 72°C for 1 min with a final
extension step at 72°C for 10 min. Desired PCR pro -
ducts were purified with a combined exonuclease I
and shrimp alkaline phosphatase solution (ExoSAP®).
The reaction was incubated for 15 min at 37°C, fol-
lowed by 15 min incubation at 80°C to inactivate the

2 enzymes. Sequences of forward and reverse DNA
strands were performed at Macrogen (Netherlands).
Sequences were assembled and aligned manually
using BioEdit 7.2.5 (Hall 1999). Unique haplotypes
were identified using the basic local alignment
search tool (BLAST) from the National Centre for
Biotechnology Information (www.ncbi.nlm.nih.gov),
following the nomenclature of the Archie Carr Cen-
ter for Sea Turtle Research (ACCSTR; https://accstr.
ufl. edu/ resources/ mtdna-sequences/).

Population structure

To assess the genetic diversity of the nesting popu-
lation at Poilão compared with the other Atlantic
nesting populations, we truncated the mtDNA frag-
ments to 490 bp length, the fragment historically
explored and for which most genetic information of
other locations is currently available. We used Arle-
quin 3.5.1.3 (Excoffier & Lischer 2010) to estimate the
haplotype (h) and nucleotide (π) diversity of nesting
populations, to estimate the genetic distances among
population pairs (φST) and to test the significance of
differentiations with exact tests based on haplotype
frequencies. A false discovery rate (FDR) correction
(Narum 2006) was applied to calculate the most fit-
ting threshold for the p-value significance consider-
ing the number of comparisons involved in the ana -
lysis and under an expected original threshold of
p < 0.05. To contextualize our sampling location
within the Atlantic region, the genetic distances
were used to perform a principal coordinate analysis
(PCoA) using the package GenAlEX 6.5.0.1 (Peakall
& Smouse 2012). We tested the significance of the
PCoA grouping with an analysis of molecular vari-
ance (AMOVA), using Arlequin 3.5.1.3 (Excoffier &
Lischer 2010).

‘Many-to-many’ mixed-stock analysis

We generated a dataset of 14 nesting populations (n
= 1815) and 17 foraging grounds (n = 1686) when in-
cluding our new mtDNA data for Poilão and the pre-
viously existing data for Atlantic nesting populations
and foraging grounds (see Fig. 1 & Table 1 for sites in-
cluded in this study and literature sources). We used
only sequences generated by this study to character-
ize the genetic composition of Poilão in order to avoid
potential pseudoreplication with data sets obtained in
previous years. Relative contributions to foraging
 areas from nesting populations (mixed stock-centric
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approach), and probable use of foraging grounds
from nesting populations (source-centric approach)
were estimated with m2m MSA, using the R package
mixstock (Bolker et al. 2007) and WinBUGS (Lunn et
al. 2000). We conducted the MSA including the num-
ber of nesting females in each population (Seminoff
et al. 2015) as a weighting factor (Prosdocimi et al.
2012). We used the Gelman−Rubin diagnostic to
 assess convergence of the chains to the posterior
 distribution, assuming that there was no evidence of
non-convergence at values <1.2 (Pella & Masuda
2001). As it is reasonable to assume that other African
 juvenile aggregations remain to be identified, we
simulated a juvenile foraging ground fixed for haplo-
type CM-A8 (similar to Naro-Maciel et al. 2012), with
a sample size equal to the mean of the foraging
grounds sample sizes (n = 99), and added this sample
to the dataset to conduct another m2m MSA.

RESULTS

Genetic composition of Poilão nesting population

Genetic variability of the Poilão nesting population
was the lowest of all Atlantic populations (mean ± SD:
h = 0.012 ± 0.011, π = 0.0001 ± 0.0003; Table 2). The

haplotype CM-A8 was dominant, as suggested by
previous studies (Formia et al. 2006). However, the
use of longer sequences (856 bp sequences) distin-
guished 2 variants of this haplotype: CM-A8.1 (98.8%)
and CM-A8.3 (0.6%). We also identified the haplo-
type CM-A42.1 (0.6%), a previously orphan haplo-
type found to date only in juveniles from West Africa
and South American foraging aggregations (see
Table S1 in the Supplement at www.int-res. com/
articles/suppl/m569p215_supp.pdf for haplotype fre-
quencies of nesting populations). Because this is a
rare haplotype and not previously detected in the
population, we performed 2 independent PCRs, and
sequenced the amplified fragment on 2 independent
occasions, to confirm that this result was not a prod-
uct of genotyping error.

Population structure

The nesting population at Poilão was significantly
different from all other Atlantic green turtle rook-
eries (Table S2 in the Supplement). All other nesting
populations were distinct from each other, except
when comparing Ascension Island with Bioko Island,
Aves with Suriname, and Aves with Buck Island. The
comparisons between Suriname and Buck Island,
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Fig. 1. (a) Atlantic green turtle Chelonia mydas nesting populations (n; n = 14) and foraging grounds (n = 17) used in the
many-to-many mixed-stock analysis (m2m MSA), and results of foraging ground-centric MSA (pie charts: proportion of each
foraging site that originates from the study population in bold; see Table 1 for abbrevations and data sources. Arrows indicate
general direction of major currents. GfC: Gulf Current, NEC: North Equatorial Current, SEC: South Equatorial Current, BrC:
Brazil Current, GC: Guinea Current, BgC: Benguela Current. (b) Region map with study site, Poilão, and 3 juvenile foraging
grounds likely to partly originate at Poilão, but to date are genetically uncharac terized: Unhocomo/Unhocomozinho and
Varela (Guinea-Bissau) and Banc d’Arguin (Mauritania). Dashed arrow illustrates the direction of 4 green turtle females 

tracked from Poilão to Banc d’Arguin (Godley et al. 2010). (Maps created using www.seaturtle.org/maptool)
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and between Sao Tome and Principe
and Bioko, be came non-significant
after FDR correction. Populations
pairs where gen e tic differentiation
was not detected were kept as dis-
crete sources for the m2m MSA,
based on their divergence in popula-
tion size and geographic position
(Monzón-Argüello et al. 2010, Put-
man & Naro-maciel 2013). The PCoA
separated rookeries by region and
evi denced 3 major groups: South At -
lantic, Southeast Caribbean and North -
west Caribbean (Fig. 2), each group
defined by a major haplo type(s): CM-
A8, CM-A5 and CM-A3/A1, respec-
tively. An accumulated 87.6% of the
genetic variability was explained by
the 2 principal coordinates of the
PCoA. Although located in the North
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Site name Abbreviation Reference

Nesting populations
East central Florida EcFL Shamblin et al. (2015a)
South Florida SFL Shamblin et al. (2015a)
Southwest Cuba CUB Ruiz-Urquiola et al. (2010)
Quintana Roo, Mexico MEX Encalada et al. (1996)
Tortuguero, Costa Rica CR Encalada et al. (1996), Bjorndal et al. (2005)
Matapica/Galibi, Suriname SUR Encalada et al. (1996), Shamblin et al. (2012)
Buck Island BUC Shamblin et al. (2012)
Aves Island AV Lahanas et al. (1998, 1994), Shamblin et al. (2012)
Rocas/Fernando Noronha RC/FN Encalada et al. (1996), Bjorndal et al. (2006)
Trindade Island TRI Bjorndal et al. (2006)
Ascension Island ASC Encalada et al. (1996), Formia et al. (2007)
Poilão, Guinea-Bissau POI This study
Bioko Island, Eq. Guinea BIO Formia et al. (2006)
Sao Tome and Principe STP Formia et al. (2006)

Foraging grounds
North Carolina, USA NC Bass et al. (2006)
East central Florida, USA EcFL Bagley (2003), Bass & Witzell (2000)
Bahamas BHM Lahanas et al. (1998)
Barbados BRB Luke et al. (2004)
Almofala, Brazil ALF Naro-Maciel et al. (2007)
Rocas Atoll, Brazil RC Naro-Maciel et al. (2012)
Fernando de Noronha, Brazil FN Naro-Maciel et al. (2012)
Bahia, Brazil BA Naro-Maciel et al. (2012)
Espirito Santo, Brazil ES Naro-Maciel et al. (2012)
Ubatuba, Brazil UB Naro-Maciel et al. (2007)
Arvoredo Island, Brazil AI Proietti et al. (2012)
Cassino Beach, Brazil CB Proietti et al. (2012)
Buenos Aires, Argentina BuA Prosdocimi et al. (2012)
Cape Verde CV Monzón-Argüello et al. (2010)
Corisco Bay, Equatorial Guinea COR Formia et al. (2006)
‘West Africa’: Liberia to Benin WA Formia et al. (2006)
Sao Tome, Sao Tome and Principe ST Formia et al. (2006)

Table 1. Nesting populations (n = 14) and foraging grounds (n = 17) for Atlantic green turtles Chelonia mydas included in 
a many-to-many mixed-stock analysis, using the control region of mtDNA as a marker (490 bp)

Nesting Sample No. of No. of Haplotypic Nucleotide 
population size females haplotypes diversity (h) diversity (π)

EcFL 311 4490 9 0.512 ± 0.020 0.0016 ± 0.0013
SFL 174 3302 10 0.444 ± 0.043 0.0022 ± 0.0016
CUB 26 2226 7 0.648 ± 0.089 0.0053 ± 0.0033
MEX 20 18 257 7 0.816 ± 0.058 0.0051 ± 0.0032
CR 433 131 751 5 0.163 ± 0.023 0.0033 ± 0.0022
SUR 46 13 067 4 0.132 ± 0.053 0.0013 ± 0.0011
BUC 61 63 2 0.153 ± 0.065 0.0030 ± 0.0020
AV 55 2833 2 0.140 ± 0.055 0.0029 ± 0.0020
RC/FN 69 345 7 0.463 ± 0.071 0.0026 ± 0.0018
TRI 99 2016 7 0.505 ± 0.052 0.0012 ± 0.0011
ASC 245 1417 13 0.303 ± 0.038 0.0008 ± 0.0008
POI 171 29 016 2 0.012 ± 0.011 0.0001 ± 0.0003
BIO 50 850 2 0.184 ± 0.068 0.0004 ± 0.0006
STP 26 376 7 0.569 ± 0.110 0.0026 ± 0.0019

Table 2. Haplotypic and genetic diversity (means ± SD) of Atlantic green turtle
Chelonia mydas nesting populations (n = 14) included in a many-to-many
mixed-stock analysis (Bolker et al. 2007), using the control region of mtDNA as
a marker (490 bp). Number of females refers to total number of reproductive
females in each population (Seminoff et al. 2015). The present study popula-

tion is in bold. Site abbreviations as in Table 1
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Atlantic, Poilão clustered within the South Atlantic
group. Using this a priori grouping in the AMOVA,
highly significant structure was observed among the
3 groups (FST = 0.691, p < 0.001), with 55.9% of the
variation found among groups.

‘Many-to-many’ mixed-stock analysis

The source-centric m2m MSA indicated that most
of Poilão’s hatchlings recruit to African foraging
grounds (51.4%), but 36.2% would reach juvenile
aggregations in the Southwest Atlantic and 8.6%

reached North Atlantic aggregations (Fig. 3). A small
proportion of the Poilão rookery was attributed to
an ‘unknown’ foraging area (3.7%). The foraging
ground- centric m2m MSA estimated that at Sao
Tome, Corisco Bay and ‘West Africa’ (Liberia to
Benin) foraging grounds, over 60% of the juveniles
originate at Poilão, as do 31% of the green turtles for-
aging at Cape Verde (Fig. 1a). Notably, at the South-
west Atlantic foraging aggregations, proportions
ranging from 16−41% were attributed to Poilão
(Fig. 1b). Adding the simulated West African forag-
ing ground did not change contributions at a regional
scale, but the relative contributions to the Gulf
of Guinea were significantly lower (8−14% lower;
Fig. S1 in the Supplement), to accommodate a large
contribution to this putative aggregation. Because
CM-A42 is a rare haplotype and therefore difficult to
detect when sampling a population, we decided to
run 2 additional MSAs using simulated datasets,
each of these including haplotype CM-A42 in 1 of the
other 2 major green turtle rookeries in the Atlantic
(i.e. Costa Rica and Ascension Island), and observed
no significant changes (Fig. S1 in the Supplement).

DISCUSSION

Green turtle connectivity in the Atlantic

One of the principal techniques that can offer
insight into the migratory connectivity of species
with complex life cycles is genetics. The robustness
of subsequent inferences, however, are highly de -
pendent on the amount of information available,

including the number of populations
and foraging grounds ana lysed, and
the strength of the signal, including
sample sizes at each site and length of
the genetic se quence and number of
genetic markers analysed. Here we
substantially increased the sampling
effort at one of the largest Atlantic
green turtle rookeries, in Poilão,
Guinea-Bissau, in order to resolve the
uncertainties surrounding the con-
nectivity be tween this nesting popu-
lation and distant juvenile aggrega-
tions. We suc cessfully found the
origin of a previously orphan haplo-
type, present in West Africa but also
in South American foraging grounds,
giving strength to the hypothesis of
east-to-west connectivity.
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Fig. 2. Principal coordinate analysis (PCoA) of 14 Atlantic
green turtle Chelonia mydas populations using φST and
 considering the 490 bp mtDNA fragment. Rookeries were
grouped in 3 clusters: the South Atlantic & Poilão (light
grey), the Southeast Caribbean (dark grey), and the North-
west Caribbean (open). Percentage of variability explained
by each coordinate is shown in brackets. See Table 1 for site 

abbreviations

Fig. 3. Mean relative contribution of the Poilão nesting population of Atlantic
green turtles Chelonia mydas to 17 foraging grounds, estimated by a many-to-
many mixed-stock analysis (Bolker et al. 2007). Error bars show 95% CIs. See 

Table 1 for site abbreviations. Dashed lines separate geographic regions
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Post-hatchling dispersal to east and west

The contributions estimated by the m2m MSA
confirm a strong connectivity within West Africa, as
previously hypothesized (Godley et al. 2010), partic-
ularly with foraging grounds in the Gulf of Guinea
(i.e. ‘Sao Tome’, ‘West Africa’ and ‘Corisco’). This
dispersal was also predicted under an ocean circu-
lation model and through passive drifting associated
with the Guinea current (Putman & Naro-Maciel
2013). Due to the large size of the nesting popula-
tion at Poilão, it is likely, however, that significant
proportions of other African juvenile aggregations
originate there. In Guinea-Bissau, there are at least
2 known aggregations of immature green turtles: (1)
at Unhocomo and Unhocomozinho Islands, in the
Bijagós Archipelago, ca. 100 km NE from Poilão
Island, and (2) at Varela beach, ca. 200 km NE from
Poilão, that have not been genetically described.
The same is true for a foraging ground in Maurita-
nia, mentioned in Godley et al. (2010), and in
Congo. We have shown that the estimated propor-
tions of post-hatchlings distributed among West
African foraging grounds de pend on the inclusion of
new juvenile aggregations. To fully understand the
connectivity of the large nesting population at
Poilão, it is essential that investigation into identify-
ing and genetically characterizing these aggrega-
tions is undertaken. The MSA also suggests the
existence of a transatlantic developmental migration
for the green turtle, from east to west, potentially
associated with the Equatorial  currents, and contin-
uing south, reaching foraging grounds in the south
of Brazil and in Argentina.

Studies using estimations of passive drift with
major oceanic currents to predict the movements
of post-hatchlings have suggested that dispersal
from Guinea-Bissau to Southwest Atlantic is
unlikely (Godley et al. 2010, Putman & Naro-
Maciel 2013). However, marine turtle hatchlings
are capable of oriented swimming significantly
impacting trajectories (Putman et al. 2012a, 2012b,
Scott et al. 2012), and able to swim against cur -
rents (Booth 2014). Indeed, recent research has
shown that drifter tracks can diverge substantially
from those of young turtles (Putman & Mansfield
2015), and it is likely that this process is contri -
buting to observed divergence be tween genetic-
and drift-based predictions (Naro-Maciel et al. in
press). Because CM-A42 is a rare haplotype and
therefore difficult to detect, we ran additional
MSAs using simulated datasets, including this
haplotype in each of the 2 other major green turtle

rookeries in the Atlantic (i.e. Costa Rica and As -
cension Island), and observed no significant
changes (Fig. S1 in the Supplementf).

Expanded sample size and geographic coverage

Formia et al. (2006) assessed the genetic composi-
tion of Poilão nesting females (n = 51) and found it
was fixed for the South Atlantic dominant mtDNA
haplotype CM-A8. By extending this previous sam-
ple size, we were able to detect a rare haplotype,
CM-A42, which to date had only been reported from
juvenile green turtles foraging in South America, and
in West Africa. This enabled the differentiation of
Poilão from other Atlantic rookeries, agreeing with
the high philopatry, characteristic of the green turtle,
and the fine-scale differentiation existent in other
places. Increasing sample size has previously been
shown to improve the statistical power of the detec-
tion of structure among populations, through the
finding of rare haplotypes (Formia et al. 2007).

The existence of non-significant comparisons
among certain population pairs could result from (1)
recent isolation, such that haplotype frequencies did
not have time to differentiate, or (2) current gene
flow, mediated by incidental deviations from natal
homing. Lack of differentiation between Bioko and
Ascension Island has been attributed to recent colo-
nization of the former (Formia et al. 2006). Likewise,
Aves and Buck Island may be more recent than the
more diverse population in Suriname. Alternatively,
the proximity between Aves and Buck Island
(<300 km), and between Bioko and Sao Tome
(<400 km), may be more likely to result in occa-
sional migrants preventing substantial differentia-
tion at an evolutionary timescale (Formia et al.
2006).

Our study further expands the geographic cover-
age of previous MSAs of the green turtle in the
Atlantic, incorporating 14 nesting populations and
17 foraging grounds in our dataset. In particular, the
inclusion of African foraging grounds (i.e. Corisco
Bay, Sao Tome and ‘West Africa’) improved the esti-
mates for the distribution of hatchlings from Poilão,
significantly reducing the estimate of the putative
‘unknown’ foraging site (here, 3.7%) compared to a
recent MSA (14.3% in Putman & Naro-Maciel
2013), as well as substantially reducing the confi-
dence intervals. In a previous m2m MSA, a high
contribution of Ascension Island to Corisco Bay was
estimated (ca. 40%; Bolker et al. 2007). Here, that
contribution drops to 9.2%, and we predict a much
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stronger connectivity between Poilão and Corisco.
By including more foraging grounds in our analyses,
we show that the Ascension rookery contributes pri-
marily to juvenile aggregations along the Southwest
Atlantic (71.6%), also seen in Putman & Naro-
Maciel (2013). Analogously, the foraging ground-
centric MSA in Bolker et al. (2007) attributes most of
the Corisco Bay foraging ground to Ascension
Island (>70%), while we estimate that 60.5% of the
aggregation originates at Poilão, and only 27.7%
would come from Ascension. Additionally, the con-
tributions of Aves Island and NE Brazil to Corisco
Bay estimated before (ca. 15% each; Bolker et al.
2007) were considerably lower in our study (2.7%
and 4.8%, respectively), and these populations also
seem to contribute more to the Southwest Atlantic.
See Tables S3 & S4 in the Supplement for m2m
MSA summary results.

Limitations of MSA and future directions

Although increasing the available sample size at
Poilão and expanding the dataset for Atlantic green
turtles has improved MSA estimates, this analysis is
based on a single marker and on a short fragment of
the mtDNA. To further unveil the green turtle con-
nectivity puzzle in the Atlantic (and elsewhere), the
strength of the genetic signal can be enhanced, at a
lesser cost than substantially increasing sample sizes.
Data from the longer mtDNA sequences should be
obtained from existing samples and made available,
to be incorporated in MSAs. Additionally, a new mar -
ker consisting of 4 AT short tandem repeats (STRs) in
the 3  end of the mtDNA, the mtSTR, had been
shown to add information on the genetic variability
within unique mtDNA haplotype classes and to con-
tribute to improve the knowledge on population con-
nectivity and evolutionary relationships (Tikochinski
et al. 2012, Shamblin et al. 2015b). Recent research
using nuclear markers found significant structure
among sea turtle rookeries, supportive of male philo -
patry (Carreras et al. 2011, Naro-Maciel et al. 2012,
2014, Roden et al. 2013). Finally, new genomic ap -
proaches have the potential to greatly increase signal
resolution and detect fine-scale population structure
(Funk et al. 2012, Milano et al. 2014, Benestan et al.
2015).

Some of the above information is now becoming
available at local scales. Hopefully, future collabora-
tions among research groups at wider scales will lead
to significant advances in our understanding of the
dispersal and distribution of marine turtles.

Adult linkage

Godley et al. (2010) recorded the trajectories of 8
post-nesting females from Poilão using satellite
transmitters, finding that they foraged either locally,
at the Bijagós Archipelago (n = 4), or regionally (n =
4), at the Banc d’Arguin National Park, Mauritania
(>1000 km distant). This aspect of investigation
would clearly benefit from enhanced sampling effort,
preferably across multiple seasons, at different points
of the season and across a range of size classes, to
avoid inter-annual (Witt et al. 2011), seasonal (Rees
et al. 2010) and phenotypic (Hawkes et al. 2006)
biases in dispersal. Future satellite tracking should
be conducted in tandem with stable isotope analysis
to facilitate the posterior assignment of turtles to
these areas, facilitating the analyses of larger sample
sizes, more relevant for population studies (Zbinden
et al. 2011).

If nesting females from Poilão are limited to the
East Atlantic, it does not necessarily contradict our
suggestion of transatlantic dispersal as post-hatch-
lings. Post-hatchling turtles forage during their de -
velopmental migration (Reich et al. 2007), which
allows them to travel much longer distances than
adults that typically fast during their reproductive
migrations (Hays & Scott 2013, Scott et al. 2014).
According to Scott et al. (2014), if the developmental
foraging area is so far as to be too costly to be repeat-
able during the cyclic reproductive migrations,
adults may forage locally, as observed at the Bijagós,
instead of returning to the sites experienced when
younger. This mechanism reduces the consumption
of reproductive energy utilized, potentially increas-
ing fecundity; however, it is dependent on the avail-
ability of foraging areas.

Conservation implications

In this study, we show the importance of the Poilão
rookery for the recruitment of juvenile green turtles
in West Africa, and also that the link with the South-
west Atlantic is very likely. In Guinea-Bissau, despite
marine turtles being fully protected by the national
fisheries law, illegal take continues to occur without
much law-enforcement effort (Catry et al. 2009), par-
ticularly at the Bijagós Archipelago, where turtles
are frequently harvested at the nesting beaches,
mostly for local consumption (Catry et al. 2009). The
nesting population at Poilão is one exception, thanks
to the Bijagós traditional ‘law’ (reinforced by state
authorities), restricting access to the island on very
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rare ceremonies of social and religious significance
(Catry et al. 2009). Off Guinea-Bissau and along the
coast of West Africa, however, vast artisanal fleets
and many industrial fishing fleets operate, using
trawlers without turtle-excluder devices (Zeeberg et
al. 2006, Catry et al. 2009), and longlining (Moore et
al. 2010). Unfortunately, there is a scarcity of quanti-
tative data in the region, either on bycatch or on tar-
geted harvesting of marine turtles, particularly from
artisanal fisheries (Moore et al. 2010). The foraging
grounds in the Southwest Atlantic to which Poilão
seems to contribute to, on the other hand, are mostly
protected from illegal harvesting (Marcovaldi & dei
Marcovaldi 1999), although bycatch may be a prob-
lem (Wallace et al. 2010). Despite the existing
threats, major green turtle populations are recover-
ing globally following decades of conservation efforts
(Broderick et al. 2006, Catry et al. 2009, Bourjea et al.
2015). It may be that the long-term enhanced protec-
tion in South America and the efforts in Poilão itself
are the principal factors involved in the recovery of
this population.
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